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Abstract

We provide a variable metric stochastic ap-
proximation theory. In doing so, we pro-
vide a convergence theory for a large class
of online variable metric methods including
the recently introduced online versions of
the BFGS algorithm and its limited-memory
LBFGS variant. We also discuss the implica-
tions of our results for learning from expert
advice.

1 Introduction

We begin by introducing online optimization and in
particular stochastic gradient descent methods.

1.1 Online Optimization

There exists an abundance of applications that can
lead us to online optimization problems where we are
trying to find the minimum of a data-dependent func-
tion C : Rn → R, w 7→ C(w) = C(w,Z), where
Z represents data or a probability distribution that
generates data. During an online optimization pro-
cedure, a sequence of parameters wt, t = 1, 2, . . . is
created by using an update rule for how to define
wt+1 given the earlier parameters and the new data,
zt, that has arrived at time t. Given a sequence of
data samples z1, ..., zt drawn from a fixed distribution,
we will use the notation Ct(·) = 1

t

∑t
i=1 C(·, zi) for

the empirical objective which is the average of on-
line/stochastic/instantaneous objectives C(·, z). We
will refer to C(·) = Ez C(·, z) as the true objective.

∗Also an adjunct at the second author’s affiliation.

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

1.2 Stochastic Gradient Descent

If one has defined a metric κ on the parameter space
by supplying a dot product, and if the online objec-
tives are differentiable, then we can use the gradients
∇κ with respect to that metric to define the update
equation

wt+1 = wt − at∇κwC(wt, zt), at > 0. (1)

If one uses metrics defined by different dot products
for different t, then one can let ∇ denote the gradient
with respect to the standard Euclidean dot product
and instead let the updates take the form

wt+1 = wt − atBt∇wC(wt, zt), (2)

where the Bt are positive definite and symmetric ma-
trices. One example of considering variable metrics
is the study of information geometry (Amari and Na-
gaoka, 1993), where the Fisher information matrix is
used to define a metric tensor on a family of prob-
ability distributions. More specific examples will be
provided in Section 2 below.

1.3 Outline and Summary

We investigate the theoretical foundations for using
online updates that include scaling matrices, that is
stochastic gradient descent where the gradients are
taken with respect to time-varying metrics. Among
other results, this provides a convergence proof for a
large class of variable metric methods including the
recent online (L)BFGS algorithm (Schraudolph et al.,
2007). In Section 3 we employ the Robbins-Siegmund
theorem to prove O(1/t) convergence in function val-
ues C(wt) for a class of functions that is useful in ma-
chine learning. This is the best possible rate (Bottou
and LeCun, 2005; Amari, 1998; Murata, 1998), limited
only by the rate at which information arrives. Under
weaker assumptions we show almost sure convergence
without rate for a larger class. Our results extend
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those in Bottou and LeCun (2005) by not demanding
that the metrics converge to an asymptotic metric.

We first introduce motivating application areas in Sec-
tion 2. Then in Section 3 we both provide a back-
ground in stochastic approximation theory and our
new theorems. We apply our theorems to prove con-
vergence for online BFGS in Section 4. Furthermore,
we consider implications in the area of learning from
expert advice in Section 5. The paper concludes with
a discussion in Section 6.

2 Examples

In this section we provide different objective functions
and describe the problem settings they appear in.

2.1 Online Risk Minimization

The goal of many machine learning algorithms is to
minimize the risk Ez l(〈w, x〉 , y), where the expecta-
tion is taken with respect to a fixed but unknown prob-
ability distribution Z that generates instance-label
pairs z := (x, y). The loss l is a non-negative con-
vex function of the parameters w and measures the
discrepancy between the labels y and the predictions
arising from x and w via their inner product 〈w, x〉
(often the Euclidean dot product if x,w ∈ Rk).

In the absence of complete knowledge about the
underlying distribution, an empirical sample Z =
{(xi, yi), i = 1, . . . , n}1 is often used to minimize the
regularized empirical risk

c

2
‖w‖2 +

1
n

n∑
i=1

l(〈w, xi〉 , yi) (3)

where the L2-regularization term c
2‖w‖

2 is introduced
for well-posedness. With larger n one can use smaller
c > 0. The true regularized risk that is estimated by
(3) is c

2‖w‖
2 + Ez l(〈w, x〉 , y).

Batch optimization algorithms, including quasi-
Newton and bundle-based methods, are available and
widely used to minimize (3), but they are compu-
tationally expensive. Gradient-based batch methods
may also fail to converge if the loss is non-smooth.
Therefore, online optimization methods that work
with small subsamples of training data have received
considerable attention recently (Kivinen and War-
muth, 1997; Schraudolph, 2002; Azoury and Warmuth,
2001; Shalev-Shwartz et al., 2007; Schraudolph et al.,
2007).

In the online setting, we replace the objective (3) with
approximations based on subsets (“mini-batches”) of

1With some abuse of notation we use Z to represent
either a data set or a distribution that generates data.

the samples:
c

2
‖w‖2 +

1
b

∑
(x,y)∈Zt

l(〈w, x〉 , y), (4)

where Zt ⊂ Z with |Zt| = b � n. Furthermore,
in online learning we can consider using c = 0 and
thereby aiming directly at minimizing the true ob-
jective Ez l(〈w, x〉 , y). During online optimization, a
sequence of parameters wt, t = 1, 2, . . . arises from
an update rule that computes wt+1 from the previous
state and the new information at time t. In addition to
alleviating the high computational cost of batch meth-
ods, the online setting also arises when the data itself
is streaming, that is, we are receiving partial informa-
tion about C(·) in a sequence of small packages.

Including second-order information in the online op-
timization procedure can accelerate the convergence
(Schraudolph et al., 2007). This is particularly true in
a setting where only one pass through a dataset is per-
formed. Bottou and LeCun (2005) and Murata (1998)
point out that minimizing the empirical objective is
different from minimizing the true objective, and show
that the result of an online second-order gradient de-
scent procedure can be as close to the true optimum
as the minimum of the empirical objective.

2.2 Filtering

The goal in filtering is to separate the signal from the
noise in a stream of data. Kalman algorithms in par-
ticular use the Euclidean distance (sum-squared loss)
and track the minimizer of the empirical objectives
Ct(w) =

∑t
i=1(yt−w ·xt)2. The inverse of the Hessian

of Ct is used asBt , at = 1 and w0 = 0 for the update in
(2). Bt+1 is found from Bt with an update whose cost
is order n2. The result is that wt = argminw Ct(w).
Therefore, if we have a fixed distribution the sequence
will converge to the optimal parameters.

The same algorithm can be extended to a more gen-
eral setting where the sum-squared loss is replaced by
arbitrary convex functions. The resulting algorithm
was called the online Newton-step algorithm by Hazan
et al. (2007) and described as an approximate “follow
the leader” algorithm, i.e., an algorithm that approx-
imately follows the optimum that the Kalman filter
tracks exactly for the sum-squared loss.

2.3 Learning from Expert Advice with
Bregman Divergences

The general convex optimization framework by Zinke-
vich (2003) that Hazan et al. (2007) worked in is also
related to the expert advice framework by Azoury
and Warmuth (2001). In the expert advice frame-
work one encounters a sequence of loss functions Lt
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(Lt(w) = C(w, zt) here) and one wants to perform the
implicitly defined update

wt+1 = argmin
w

∆H(w,wt) + atLt(w) (5)

where ∆H is the Bregman divergence

∆H(p, q) = H(p)−H(q) +∇H(q) · (p− q) (6)

defined by the differentiable convex function H. The
squared Euclidean distance is an example of a Breg-
man divergence, corresponding to H(p) = 1

2‖p‖
2
2. The

goal for Azoury and Warmuth (2001), as it was for
Zinkevich (2003), was to have a small total accumu-
lated loss

∑t
j=1 Lj(wj) and in particular small regret,∑t

j=1 Lj(wj) − minw
∑t
j=1 Lj(w). To derive an ex-

plicit update, Azoury and Warmuth (2001) differenti-
ate the expression to be minimized

∇(∆H(w,wt) + atLt(w)) = (7)
h(w)− h(wt) + at∇Lt(w)

and by using the approximation ∇Lt(w) ≈ ∇Lt(wt),
they arrive at the updates

wt+1 = h−1(h(wt)− at∇Lt(wt)). (8)

This reduces to online gradient descent, wt+1 = wt −
∇Lt(wt), for the case h(w) = w, i.e., when H(w) =
1
2‖w‖

2
2.

Azoury and Warmuth (2001) in particular consider
loss functions of a special form, namely the case where
Lt(w) = ∆G(xt · w, g−1(yt)) where g = ∇G is an in-
creasing continuous function from R to itself and where
(xt, yt) = zt is an example. This results in simpler up-
dates since it implies that ∇Lt(w) = (g(w ·xt)−yt)xt.
Note that, given a parametrization of Rd, a one-
dimensional transfer function g can be used to de-
fine a d-dimensional continuous bijection by applying
it coordinate-wise.

It is interesting to compare (8) to a reparametrization
where one makes a coordinate change γ = h(w). Then
(8) can be written as

h(wt+1) = h(wt)− at∇wLt(wt). (9)

The one obstacle to identifying (9) with

γt+1 = γt − at∇γL̃t(γt) (10)

where L̃t(γ) = L(h−1(γ)), is that the gradient of Lt is
taken with respect to w. We know that ∇γL̃t(γt) =
Bt∇wLt(wt), where Bt is the inverse Hessian of H at
wt, in other words the inverse Jacobian of h.

A reason for doing a reparametrization is that the loss
functions Lt might not satisfy the conditions that are

needed for convergence of stochastic gradient descent,
but it can be possible to find a transfer function h
such that L̃t does. In that sense, the update (8) can
be a way of trying to do this even if we only have
the gradients ∇wLt and do not want to calculate the
matrices Bt. Our main theorems will tell us when it is
acceptable to omit Bt, and thereby use an SGD update
with respect to varying metrics.

3 Stochastic Approximation Theory

Robbins and Monro (1951) proved a theorem that im-
plies convergence for one-dimensional stochastic gra-
dient descent; Blum (1954) generalized it to the multi-
variate case. Robbins and Siegmund (1971) achieved a
stronger result of wider applicability in supermartin-
gale theory. Here we extend the known convergence
results (Bottou and LeCun, 2005) in two ways: a)
We prove that updates that include scaling matrices
with eigenvalues bounded by positive constants from
above and below will converge almost surely; b) under
slightly stronger assumptions we obtain a O(1/t) rate
of convergence in the function values.

3.1 The Multivariate Robbins-Monro
Procedure

Suppose that ∇C = f : Rk → Rk is an unknown
continuous function that we want to find a root of.
Furthermore, suppose that there is a unique root and
denote it by w∗. Given an initial estimate w1, the
procedure constructs a sequence of estimates wt such
that wt → w∗ as t → ∞. For any random vec-
tor X let Et(X) be the conditional expectation given
w1, . . . , wt. Given w1, . . . , wt, we assume that we ob-
serve an unbiased estimate Yt of f(wt) = ∇C(wt), i.e.,
EYt = f(wt). Given Yt and wt we define wt+1 by

wt+1 = wt − atYt, (11)

where at > 0 for all t,
∑
at = ∞ and

∑
a2
t < ∞.

The Yt are assumed to be drawn from a family Y (x)
of random vectors defined for all x ∈ Rk, and Yt is
distributed as Y (wt). To ensure that wt converges to
w∗ almost surely it is sufficient to assume that there
are finite constants A and B such that E ‖Y (x)‖2 ≤
A+B‖x− w∗‖2 for all x, and that for all ε > 0

inf{(x− w∗)T f(x) : ε < ‖x− w∗‖ < ε−1} > 0. (12)

For instance, strictly convex functions satisfy (12).
This classical convergence result is implied by the fol-
lowing theorem on almost positive supermartingales,
which we will also use to prove our results:

Theorem 3.1 (Robbins and Siegmund, 1971)
Let (Ω,F , P ) be a probability space and F1 ⊆ F2 ⊆ . . .
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a sequence of sub-σ-fields of F . Let Ut, βt, ξt and ζt,
t = 1, 2, . . . be non-negative Ft-measurable random
variables such that

E(Ut+1 | Ft) ≤ (1 + βt)Ut + ξt − ζt, t = 1, 2, . . .
(13)

Then on the set {
∑
t βt < ∞,

∑
t ξt < ∞}, Ut con-

verges almost surely to a random variable, and
∑
t ζt <

∞ almost surely.

3.2 Convergence for Updates with Scaling
Matrices

Bottou and LeCun (2005) previously presented results
on the rate of convergence in parameter space (using
the Euclidean norm) of online updates with conver-
gent scaling matrices, and remark that bounds on the
eigenvalues of the scaling matrix will be essential to ex-
tending convergence guarantees beyond that. Since re-
cent online quasi-Newton methods (Schraudolph et al.,
2007) do not provide convergence of their scaling ma-
trices, we now employ the Robbins-Siegmund theo-
rem to prove that such updates are still guaranteed
almost sure convergence, provided the spectrum of
their (possibly non-convergent) scaling matrices is uni-
formly bounded from above by a finite constant and
from below by a strictly positive constant.

Theorem 3.2 Let C : Rn → R be a twice differen-
tiable cost function with unique minimum w∗, and let

wt+1 = wt − atBtYt, (14)

where Bt is symmetric and only depends on informa-
tion available at time t.
Then wt converges to w∗ almost surely if the following
conditions hold:

C.1 (∀t) Et Yt = ∇wC(wt);

C.2 (∃K) (∀w) ‖∇2
wC(w)‖ ≤ 2K;

C.3 (∀δ > 0) infC(w)−C(w∗)>δ ‖∇wC(w)‖ > 0;

C.4 (∃A,B) (∀t) E ‖Yt‖2 ≤ A+BC(wt);

C.5 (∃ m,M : 0 < m < M < ∞) (∀t) mI ≺ Bt ≺
MI, where I is the identity matrix;

C.6
∑
t a

2
t <∞ and

∑
t at =∞.

Proof Since C is twice differentiable and has bounded
Hessian (C.2) we can use Taylor expansion and the
upper eigenvalue bound (C.5) to prove that

C(wt+1) = C(wt − atBtYt) ≤ (15)

C(wt)− at[∇wC(wt)]TBtYt +KM2a2
t‖Yt‖2

which implies, using (C.1) and (C.4), that

Et C(wt+1) ≤ C(wt) +KM2a2
t [A+BC(wt)]− (16)

at[∇wC(wt)]TBt∇wC(wt).

If we let Ut = C(wt) and merge the terms containing
Ut it follows that Et Ut+1 ≤

Ut(1+a2
tBKM

2)+AKM2a2
t−mat‖∇wC(wt)‖2. (17)

Since
∑
t a

2
t < ∞ (C.6), the Robbins-Siegmund theo-

rem can now be applied. We find that∑
t

at‖∇wC(wt)‖2 <∞. (18)

Since
∑
at =∞ (C.6) it follows from (C.3) that

‖(∇wC(wt))‖2 → 0 (19)

and that C(wt)→ C(w∗) as t→∞.

Remark 3.3 The assumption that C is twice differ-
entiable is only needed for the Taylor expansion we use
to obtain (15). If we have such a property from else-
where we do not need twice-differentiability.

3.3 Asymptotic Rates

Consider the situation described in Theorem 3.2. We
now strengthen assumption (C.3), which demands that
the function C is not so flat around the minimum that
we may never approach it, to instead assuming that

C(wt)− C(w∗)
‖∇C(wt)‖2

≤ D <∞ ∀t. (20)

Condition (20) is implied by strong convexity if we
know that the wt tend to the optimum w∗. Since
∇C(w∗) = 0 we can use first-order Taylor expan-
sion of ∇C around w∗ to approximate ‖∇C(w)‖2 by
(w − w∗)T∇2C(w∗)(w − w∗).

We will also modify assumption (C.4) by setting B =
0. Theorem 3.2 guarantees (under the weaker condi-
tions) that the procedure will almost surely generate
a converging sequence which is therefore contained in
some ball around w∗. This makes the new condition
reasonable. Bottou (1998) contains a more elaborate
discussion on what is there called ”Global Confine-
ment”.

We need a result on what the expected improvement
is, given the step size at, the uniform bound on the
Hessian, and the uniform eigenvalue bounds. The key
to achieving this is (15). This section’s counterpart to
(16) under the new conditions is

Et C(wt+1)− C(w∗) ≤ (21)

[C(wt)− C(w∗)](1− atmD) +AKM2a2
t .
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We want to know the rate of the sequence EC(wt) −
infw̃ C(w̃), and will use the fact that taking the un-
conditional expectation of (21) yields the result

EC(wt+1)− C(w∗) ≤ (22)

[EC(wt)− C(w∗)](1− atmD) +AKM2a2
t .

We are now in a position to state our result:

Theorem 3.4 Let C : Rn → R be a twice differen-
tiable cost function with unique minimum w∗. Assume
that

1. Conditions C.1–C.6 from Theorem 3.2 hold with
B = 0 in C.4.

2. Equation (20) holds.

3. at = τ
t with τ > 0.

Then EC(wt)−infw̃ C(w̃) is equivalent to 1
t as t→∞.

Proof Bottou and LeCun (2005, A.4) state: if
ut = [1 − α

t + o(1/t)]ut−1 + β
t2 + o(1/t2) with α > 1

and β > 0, then tut → β
α−1 . Theorem 3.4 follows

from (22) by setting ut = EC(wt) − C(w∗), noting
that if (20) and hence (22) hold for one D > 0, they
also hold for all larger constants.

4 Quasi-Newton Methods

Quasi-Newton methods are optimization methods
with updates of the form wt+1 ← wt− atBt∇wC(wt),
where at > 0 is a scalar gain (typically set by a line
search) and Bt a positive-semidefinite scaling matrix.
If Bt = I, we have simple gradient descent; setting Bt
to the inverse Hessian of C(w) we recover Newton’s
method. Inverting the k×k Hessian is a computation-
ally challenging task if k is large; quasi-Newton meth-
ods reduce the computational cost by incrementally
maintaining a symmetric positive-definite estimate Bt
of the inverse Hessian of the objective function.

4.1 (L)BFGS

The BFGS algorithm (Nocedal and Wright, 1999) was
developed independently by Broyden, Fletcher, Gold-
farb, and Shanno in 1970. It incrementally main-
tains its estimate Bt of the inverse Hessian via a
rank-two update that minimizes a weighted Frobe-
nius norm ‖Bt+1 − Bt‖W subject to the secant equa-
tion st = Bt+1yt, where st := wt+1 − wt and yt :=
∇wC(wt+1) − ∇wC(wt) denote the most recent step
along the optimization trajectory in parameter and
gradient space, respectively. LBFGS is a limited-
memory (matrix-free) version of BFGS.

4.2 Online (L)BFGS

Recently developed online variants of BFGS and
LBFGS, called oBFGS resp. oLBFGS, are amenable
to stochastic approximation of the gradient (Schrau-
dolph et al., 2007). The key differences between the
online and batch algorithms can be summarized as fol-
lows:

The gradient of the objective is estimated from small
samples (mini-batches) of data. The difference yt of
gradients is computed with gradients for the same data
sample, i.e., for the same function C(·, zt). Line search
is replaced by a gain sequence at. A trust region pa-
rameter λ is introduced modifying the algorithm to
estimate (Ht +λI)−1, where Ht is the Hessian at iter-
ation t; this prevents the largest eigenvalue of Bt from
exceeding λ−1.

See Schraudolph et al. (2007) for a more detailed de-
scription of the oLBFGS and oBFGS algorithms, and
for experimental results on quadratic bowl objectives
and conditional random fields (CRFs), which are in-
stances of risk minimization.

Remark 4.1 To guarantee a uniform lower eigen-
value bound for the updates of Schraudolph et al.
(2007) we would have to use Bt + γI for some γ > 0,
effectively interpolating between o(L)BFGS as defined
by Schraudolph et al. (2007) and simple online gradi-
ent descent. This lower bound is not needed for con-
vergence per se but to prove that the convergence is to
the minimum.

4.3 Filtering

Kailath et al. (2000, Chapter 14) present assumptions
in control theory that imply either convergence of the
matrices Bt or upper and lower eigenvalue bounds.
The relevant control theory is too extensive and com-
plicated to be reviewed here and we therefore only
point out the connection.

5 Expert Advice with Bregman
Divergences

We now compare the updates in the expert advice
framework by Azoury and Warmuth (2001) to the
SGD updates that would result from a non-linear
reparametrization.

As outlined in section 2.3 the difference between the
update

wt+1 = h−1(h(wt)− at∇Lt(wt)). (23)

and performing stochastic gradient descent with re-
spect to a new variable γ = h(w) is that the latter
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would include matrices Bt which are the inverse Jaco-
bians of h at wt, i.e. the inverse Hessian of H where
∇H = h. The update γt+1 = γt − at∇γL̃t(γt) where
L̃t(γ) = Lt(h−1(γ)), expressed with respect to w looks
as follows

wt+1 = h−1(h(wt)− atBt∇Lt(wt)). (24)

Therefore (23) can be written as

γt+1 = γt − atB−1
t ∇γL̃t(γt). (25)

The main point of the reparametrization would be to
change variables so that SGD converges with an op-
timal rate for the new objectives. We would like the
new objective to be approximately quadratic. Assum-
ing that we have chosen the transfer function in such a
manner that our main theorems apply to the new ob-
jective function, it remains to check the scaling matrix
condition.

To satisfy the conditions for the scaling matrices we
need the Jacobian of the transfer function to have up-
per and lower eigenvalue bounds. In the literature that
these methods are studied in, an assumption of uni-
formly bounded gradients ∇Lt(wt) (Azoury and War-
muth, 2001) is often used, or the parameters are re-
stricted to a compact set (Zinkevich, 2003). In that
case the conditions on scaling matrices become easier
to satisfy: in any compact set, popular functions like
eθ, (1+eθ)−1, or other sigmoid functions (though not,
e.g., θ3 which is flat at the origin) have derivatives
that are bounded from above and below by a strictly
positive constant.

6 Conclusion

We provide a variable metric stochastic approximation
theory which implies convergence for stochastic gra-
dient descent even when the gradients are calculated
with respect to variable metrics. Metrics are some-
times changed for optimization purposes, as in the
case of using quasi-Newton methods. Our main the-
orems imply convergence results for online versions of
the BFGS and LBFGS optimization methods. Kalman
filters are a class of well-known algorithms that can be
viewed as an online Newton method for the special
case of square losses, since the procedure at every step
performs a gradient step where the gradient is defined
using the Hessian of the loss for the examples seen so
far. Finally we investigate the task of learning from ex-
pert advice where Bregman divergences are frequently
used to achieve updates that are suitable for the task at
hand. We interpret the resulting updates as stochastic
gradient descent in a space that has undergone a non-
linear reparametrization, and where we use different
metrics depending on the point we are at.
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