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Abstract

Although the detection of invariant structure in a given set of input pat-
terns is vital to many recognition tasks, connectionist learning rules tend
to focus on directions of high variance (principal components). The predic-
tion paradigm is often used to reconcile this dichotomy; here we suggest a
more direct approach to invariant learning based on an anti-Hebbian learn-
ing rule. An unsupervised two-layer network implementing this method
in a competitive setting learns to extract coherent depth information from
random-dot stereograms.

1 INTRODUCTION: LEARNING INVARIANT STRUCTURE

Many connectionist learning algorithms share with principal component analysis (Jolliffe,
1986) the strategy of extracting the directions of highest variance from the input. A single
Hebbian neuron, for instance, will come to encode the input’s £rst principal component
(Oja and Karhunen, 1985); various forms of lateral interaction can be used to force a layer of
such nodes to differentiate and span the principal component subspace — cf. (Sanger, 1989;
Kung and Diamantaras, 1991; Leen, 1991), and others. The same type of representation
also develops in the hidden layer of backpropagation autoassociator networks (Baldi and
Hornik, 1989).

However, the directions of highest variance need not always be those that yield the most
information, or — as the case may be — the information we are interested in (Intrator,
1991). In fact, it is sometimes desirable to extract the invariant structure of a stimulus in-
stead, learning to encode those aspects that vary the least. The problem, then, is how to
achieve this within a connectionist framework that is so closely tied to the maximization of
variance.

∗Reprinted from J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors (1992), Advances in Neural
Information Processing Systems, volume 4, pages 1017–1024. Morgan Kaufmann, San Mateo.



In (Földiák, 1991), spatial invariance is turned into a temporal feature by presenting trans-
formation sequences within invariance classes as a stimulus. A built-in temporal smoothness
constraint enables Hebbian neurons to learn these transformations, and hence the invari-
ance classes. Although this is an ef£cient and neurobiologically attractive strategy it is
limited by its strong assumptions about the nature of the stimulus.

A more general approach is to make information about invariant structure available in the
error signal of a supervised network. The most popular way of doing this is to require the
network to predict the next patch of some structured input from the preceding context, as
in (Elman, 1990); the same prediction technique can be used across space as well as time.
It is also possible to explicitly derive an error signal from the mutual information between
two patches of structured input (Becker and Hinton, 1992), a technique which has been
applied to viewpoint-invariant object recognition (Zemel and Hinton, 1991).

2 METHODS

2.1 ANTI-HEBBIAN FEEDFORWARD LEARNING

In most formulations of the covariance learning rule it is quietly assumed that the learning
rate be positive. By reversing the sign of this constant in a recurrent autoassociator, Ko-
honen constructed a “novelty £lter” that learned to be insensitive to familiar features in
its input (Kohonen, 1989). More recently, such anti-Hebbian synapses have been used for
lateral decorrelation of feature detectors (Barlow and Földiák, 1989; Leen, 1991) as well as
— in differential form — removal of temporal variations from the input (Mitchison, 1991).

We suggest that in certain cases the use of anti-Hebbian feedforward connections to learn
invariant structure may eliminate the need to bring in the heavy machinery of supervised
learning algorithms required by the prediction paradigm, with its associated lack of neuro-
biological plausibility. Speci£cally, this holds for linear problems, where the stimuli lie near
a hyperplane in the input space: the weight vector of an anti-Hebbian neuron will move
into a direction normal to that hyperplane, thus characterizing the invariant structure.

Of course a set of Hebbian feature detectors whose weight vectors span the hyperplane
would characterize the associated class of stimuli just as well. The anti-Hebbian learning
algorithm, however, provides a more ef£cient representation when the dimensionality of
the hyperplane is more than half that of the input space, since less normal vectors than
spanning vectors are required for unique characterization in this case. Since they remove
rather than extract the variance within a stimulus class, anti-Hebbian neurons also present
a very different output representation to subsequent layers.

Unfortunately it is not suf£cient to simply negate the learning rate of a layer of Hebbian
feature detectors in order to turn them into working anti-Hebbian invariance detectors:
although such a change of sign does super£cially achieve the intended effect, many of the
subtleties that make Hebb’s rule work in practice do not survive the transformation. In
what follows we address some of the problems thus introduced.

Like the Hebb rule, anti-Hebbian learning requires weight normalization, in this case to
prevent weight vectors from collapsing to zero. Oja’s active decay rule (Oja, 1982) is a
popular local approximation to explicit weight normalization:

∆~w = η(~xy − ~wy2), where y = ~w T~x (1)



Here the £rst term in parentheses represents the standard Hebb rule, while the second is the
active decay. Unfortunately, Oja’s rule can not be used for weight growth in anti-Hebbian
neurons since it is unstable for negative learning rates (η < 0), as is evident from the ob-
servation that the growth/decay term is proportional to ~w. In our experiments, explicit
L2-normalization of weight vectors was therefore used instead.

Hebbian feature detectors attain maximal activation for the class of stimuli they represent.
Since the weight vectors of anti-Hebbian invariance detectors are normal to the invariance
class they represent, membership in that class is signalled by a zero activation. In other
words, linear anti-Hebbian nodes signal violations of the constraints they encode rather
than compliance. While such an output representation can be highly desirable for some
applications1, it is unsuitable for others, such as the classi£cation of mixtures of invariants
described below.

We therefore use a symmetric activation function that responds maximally for a zero net
input, and decays towards zero for large net inputs. More speci£cally, we use Gaussian ac-
tivation functions, since these allow us to interpret the nodes’ outputs as class membership
probabilities. Soft competition between nodes in a layer can then be implemented simply
by normalizing these probabilities (i.e. dividing each output by the sum of outputs in a
layer), then using them to scale weight changes (Nowlan, 1990).

2.2 AN ANTI-HEBBIAN OBJECTIVE FUNCTION

The magnitude of weight change in a Hebbian neuron is proportional to the cosine of the
angle between input and weight vectors. This means that nodes that best represent the cur-
rent input learn faster than those which are further away, thus encouraging differentiation
among weight vectors. Since anti-Hebbian weight vectors are normal to the hyperplanes
they represent, those that best encode a given stimulus will experience the least change in
weights. As a result, weight vectors will tend to clump together unless weight changes are
rescaled to counteract this de£ciency. In our experiments, this is done by the soft competi-
tion mechanism; here we present a more general framework towards this end.

A simple Hebbian neuron maximizes the variance of its output y through stochastic ap-
proximation by performing gradient ascent in 1

2
y2 (Oja and Karhunen, 1985):
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As seen above, it is not suf£cient for an anti-Hebbian neuron to simply perform gradient
descent in the same function. Instead, an objective function whose derivative has inverse
magnitude to the above at every point is needed, as given by

∆wi ∝
∂

∂wi

1

2
log(y2) =

1

y

∂

∂wi

y =
xi

y
(3)

1Consider the subsumption architecture of a hierarchical network in which higher layers only re-
ceive information that is not accounted for by earlier layers.
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Figure 1: Possible objective functions for anti-Hebbian learning (see text).

Unfortunately, the pole at y = 0 presents a severe problem for simple gradient descent
methods: the near-in£nite derivatives in its vicinity lead to catastrophically large step sizes.
More sophisticated optimization methods deal with this problem by explicitly controlling
the step size; for plain gradient descent we suggest reshaping the objective function at the
pole such that its partials never exceed the input in magnitude:

∆wi ∝
∂

∂wi

ε log(y2 + ε2) =
2εxiy

y2 + ε2
, (4)

where ε > 0 is a free parameter determining at which point the logarithmic slope is aban-
doned in favor of a quadratic function which forms an optimal trapping region for simple
gradient descent (Figure 1).

3 RESULTS ON RANDOM-DOT STEREOGRAMS

In random-dot stereograms, stimuli of a given stereo disparity lie on a hyperplane whose
dimensionality is half that of the input space plus the disparity in pixels. This is easily
appreciated by considering that given, say, the left half-image and the disparity, one can
predict the right half-image except for the pixels shifted in at the edge. Thus stereo dis-
parities that are small compared to the receptive £eld width can be learned equally well
by Hebbian and anti-Hebbian algorithms; when the disparity approaches receptive £eld
width, however, anti-Hebbian neurons have a distinct advantage.

3.1 SINGLE LAYER NETWORK: LOCAL DISPARITY TUNING

Our training set consisted of stereo images of 5,000 frontoparallel strips at uniformly ran-
dom depth covered densely with Gaussian features of random location, width, polarity
and power. The images were discretized by integrating over pixel bins in order to allow
for sub-pixel disparity acuity. Figure 2 shows that a single cluster of £ve anti-Hebbian
nodes with soft competition develops near-perfect tuning curves for local stereo disparity
after 10 sweeps through this training set. This disparity tuning is achieved by learning to
have corresponding weights (at the given disparity) be of equal magnitude but opposite
sign, so that any stimulus pattern at that disparity yields a zero net input and thus maximal
response.
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Figure 2: Sliding window average response of £rst-layer nodes after presentation of 50,000
stereograms as a function of stimulus disparity: strong disparity tuning is evident.
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Figure 3: Architecture of the network (see text).



Note, however, that this type of detector suffers from false positives: input patterns that
happen to yield near-zero net input even though they have a different stereo disparity.
Although the individual response of a tuned node to an input pattern of the wrong dis-
parity is therefore highly idiosyncratic, the sliding window average of each response with
its 250 closest neighbors (with respect to disparity) shown in Figure 2 is far more well-
behaved. This indicates that the average activity over a number of patterns (in a “moving
stereogram” paradigm) — or, alternatively, over a population of nodes tuned to the same
disparity — allows discrimination of disparities with sub-pixel accuracy.

3.2 TWO-LAYER NETWORK: COHERENT DISPARITY TUNING

In order to investigate the potential for hierarchical application of this architecture, it
was extended to two layers as shown in Figure 3. The two £rst-layer clusters with non-
overlapping receptive £elds extract local stereo disparity as before; their output is moni-
tored by a second-layer cluster. Note that there is no backpropagation of derivatives: all
three clusters use the same unsupervised learning algorithm.

This network was trained on coherent input, i.e. stimuli for which the stereo disparity was
identical across the receptive £eld boundary of £rst-layer clusters. As shown in Figure 4,
the second layer learns to preserve the £rst layer’s disparity tuning for coherent patterns,
albeit in in somewhat degraded form. Each node in the second layer learns to pick out ex-
actly the two corresponding nodes in the £rst-layer clusters, again by giving them weights
of equal magnitude but opposite sign.

However, the second layer represents more than just a noisy copy of the £rst layer: it
meaningfully integrates coherence information from the two receptive £elds. This can
be demonstrated by testing the trained network on non-coherent stimuli which exhibit
a depth discontinuity between the receptive £elds of £rst-layer clusters. The overall re-
sponse of the second layer is tuned to the coherent stimuli it was trained on (Figure 5).

4 DISCUSSION

Although a negation of the learning rate introduces various problems to the Hebb rule,
feedforward anti-Hebbian networks can pick up invariant structure from the input. We
have demonstrated this in a competitive classi£cation setting; other applications of this
framework are possible. We £nd the subsumption aspect of anti-Hebbian learning partic-
ularly intriguing: the real world is so rich in redundant data that a learning rule which
can adaptively ignore much of it must surely be an advantage. From this point of view, the
promising £rst experiments we have reported here use quite impoverished inputs; one of
our goals is therefore to extend this work towards real-world stimuli.
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Figure 4: Sliding window average response of second-layer nodes after presentation of
250,000 coherent stereograms as a function of stimulus disparity: disparity tuning is pre-
served in degraded form.
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Figure 5: Sliding window average of total second-layer response to non-coherent input as
a function of stimulus discontinuity: second layer is tuned to coherent patterns.
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Földiák, P. (1991). Learning invariance from transformation sequences. Neural Computation,
3(2):194–200.

Intrator, N. (1991). Exploratory feature extraction in speech signals. In (Lippmann et al.,
1991), pages 241–247.

Jolliffe, I. (1986). Principal Component Analysis. Springer-Verlag, New York.

Kohonen, T. (1989). Self-Organization and Associative Memory. Springer-Verlag, Berlin, third
edition.

Kung, S. and Diamantaras, K. (1991). Neural networks for extracting unsymmetric prin-
cipal components. In Juang, B., Kung, S., and Kamm, C., editors, Neural Networks for
Signal Processing: Proceedings of the 1991 IEEE Workshop, pages 50–59, Princeton, NJ.
IEEE, New York.

Leen, T. K. (1991). Dynamics of learning in linear feature-discovery networks. Network,
2:85–105.

Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors (1991). Advances in Neural
Information Processing Systems, volume 3. Morgan Kaufmann, San Mateo, CA.

Mitchison, G. (1991). Removing time variation with the anti-Hebbian differential synapse.
Neural Computation, 3(3):312–320.

Nowlan, S. J. (1990). Maximum likelihood competitive learning. In Touretzky, D. S., editor,
Advances in Neural Information Processing Systems, volume 2, pages 574–582. Morgan
Kaufmann, San Mateo, CA.

Oja, E. (1982). A simpli£ed neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15:267–273.

Oja, E. and Karhunen, J. (1985). On stochastic approximation of the eigenvectors and eigen-
values of the expectation of a random matrix. Journal of Mathematical Analysis and Ap-
plications, 106:69–84.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks, 2:459–473.

Zemel, R. S. and Hinton, G. E. (1991). Discovering viewpoint-invariant relationships that
characterize objects. In (Lippmann et al., 1991), pages 299–305.


