View publications... Download the DjVu plug-in: [download]

by Coauthor

Aberdeen, DouglasBüche, DirkBarral, YvesBelew, Richard K.Borgwardt, KarstenBray, MatthieuCannarozzi, GinaChen, JingChik, DesmondChong, AdrianDayan, PeterEldracher, MartinFaty (joint first authors), MahamadouFriberg, Markus T.Günter, SimonGers, Felix A.Giannakopoulos, XavierGonnet, Gaston H.Gonnet, PedroGraepel, ThoreGrefenstette, John J.Hansen, NikolausKamenetsky, DmitryKaratzoglou, AlexandrosKlapper-Rybicka, MagdalenaKoller-Meier, EstherKondor, RisiKoumoutsakos, PetrosKriegel, Hans-PeterLi, ZhidongMüller, PascalMüller, SybilleMcInerney, JohnMurphy, KevinRohr, Peter vonRoth, Alexander C.Schmidhuber, JürgenSchmidt, Mark W.Sejnowski, Terrence J.Smola, Alex J.Sunehag, PeterTrumpf, JochenVan Gool, LucViola, Paul A.Vishwanathan, S. V. N.Yu, JinYu, ZhenghuaZhao, Jieyu

Aberdeen, Douglas

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast Online Policy Gradient Learning with SMD Gain Vector Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 1185–1192, MIT Press, Cambridge, MA, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Büche, Dirk

D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary Algorithms with Gaussian Process Fitness Function Models. IEEE Transactions on Systems, Man, and Cybernetics, C35(2):183–194, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary Algorithms Using Fitness Function Models. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 166–169, AAAI, Chicago, 2003.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Barral, Yves

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

M. T. Friberg, P. Gonnet, Y. Barral, N. N. Schraudolph, and G. H. Gonnet. Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms. In Algorithms in Bioinformatics: 6th Intl. Workshop (WABI), pp. 1–11, Springer Verlag, Berlin, Zurich, Switzerland, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Belew, Richard K.

R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving Networks: Using the Genetic Algorithm with Connectionist Learning. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, SFI Studies in the Sciences of Complexity: Proceedings, pp. 511–547, Addison-Wesley, Redwood City, CA, 1992.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and R. K. Belew. Dynamic Parameter Encoding for Genetic Algorithms. Machine Learning, 9:9–21, 1992.
Details     Download: [pdf] [djvu] [ps.gz] 

Borgwardt, Karsten

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

K. M. Borgwardt, H. Kriegel, S. Vishwanathan, and N. N. Schraudolph. Graph Kernels for Disease Outcome Prediction from Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing (PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast Computation of Graph Kernels. In Advances in Neural Information Processing Systems (NIPS), pp. 1449–1456, MIT Press, Cambridge, MA, 2007.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

Bray, Matthieu

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast Stochastic Optimization for Articulated Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, N. N. Schraudolph, and L. Van Gool. Stochastic Optimization for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated Structures. In IEEE Workshop on Articulated and Nonrigid Motion, Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C., 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In First European Conference on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Cannarozzi, Gina

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

Chen, Jing

Z. Li, J. Chen, and N. N. Schraudolph. An Improved Mean-Shift Tracker with Kernel Prediction and Scale Optimisation Targeting for Low-Frame-Rate Video Tracking. In 19th Intl. Conf. Pattern Recognition (ICPR), Tampa, Florida, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph. Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing (MMSP), IEEE, Cairns, Australia, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Chik, Desmond

D. Chik, J. Trumpf, and N. N. Schraudolph. Using an Adaptive VAR Model for Motion Prediction in 3D Hand Tracking. In 8th Intl. Conf. Automatic Face & Gesture Recognition (FG), IEEE, Amsterdam, Netherlands, 2008.
Details     Download: [pdf] [djvu] 

D. Chik, J. Trumpf, and N. N. Schraudolph. 3D Hand Tracking in a Stochastic Approximation Setting. In 2nd Workshop on Human Motion: Understanding, Modeling, Capture and Animation, 11th IEEE Intl. Conf. Computer Vision (ICCV), pp. 136–151, Springer Verlag, Berlin, Rio de Janeiro, Brazil, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

Chong, Adrian

Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph. Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing (MMSP), IEEE, Cairns, Australia, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Dayan, Peter

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Learning to Evaluate Go Positions via Temporal Difference Methods. In N. Baba and L. C. Jain, editors, Computational Intelligence in Games, Studies in Fuzziness and Soft Computing, pp. 77–98, Springer Verlag, Berlin, 2001.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal Difference Learning of Position Evaluation in the Game of Go. In Advances in Neural Information Processing Systems (NIPS), pp. 817–824, Morgan Kaufmann, San Francisco, CA, 1994.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Eldracher, Martin

N. N. Schraudolph, M. Eldracher, and J. Schmidhuber. Processing Images by Semi-Linear Predictability Minimization. Network: Computation in Neural Systems, 10(2):133–169, 1999.
Details     Download: [djvu] [ps.gz] 

Faty (joint first authors), Mahamadou

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

Friberg, Markus T.

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

M. T. Friberg, P. Gonnet, Y. Barral, N. N. Schraudolph, and G. H. Gonnet. Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms. In Algorithms in Bioinformatics: 6th Intl. Workshop (WABI), pp. 1–11, Springer Verlag, Berlin, Zurich, Switzerland, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Günter, Simon

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning. Journal of Machine Learning Research, 11:1145–1200, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization. In Proc. 25th Intl. Conf. Machine Learning (ICML), pp. 1216–1223, Omnipress, Helsinki, Finland, 2008.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

S. Günter, N. N. Schraudolph, and S. Vishwanathan. Fast Iterative Kernel Principal Component Analysis. Journal of Machine Learning Research, 8:1893–1918, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, S. Günter, and S. Vishwanathan. Fast Iterative Kernel PCA. In Advances in Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press, Cambridge, MA, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, J. Yu, and S. Günter. A Stochastic Quasi-Newton Method for Online Convex Optimization. In Proc. 11th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 436–443, Journal of Machine Learning Research, San Juan, Puerto Rico, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

Gers, Felix A.

F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, 3:115–143, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

Giannakopoulos, Xavier

N. N. Schraudolph and X. Giannakopoulos. Online Independent Component Analysis With Local Learning Rate Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 789–795, The MIT Press, Cambridge, MA, 2000.
Details     Download: [pdf] [djvu] [ps.gz] 

Gonnet, Gaston H.

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

M. T. Friberg, P. Gonnet, Y. Barral, N. N. Schraudolph, and G. H. Gonnet. Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms. In Algorithms in Bioinformatics: 6th Intl. Workshop (WABI), pp. 1–11, Springer Verlag, Berlin, Zurich, Switzerland, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Gonnet, Pedro

M. T. Friberg, P. Gonnet, Y. Barral, N. N. Schraudolph, and G. H. Gonnet. Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms. In Algorithms in Bioinformatics: 6th Intl. Workshop (WABI), pp. 1–11, Springer Verlag, Berlin, Zurich, Switzerland, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Graepel, Thore

N. N. Schraudolph and T. Graepel. Combining Conjugate Direction Methods with Stochastic Approximation of Gradients. In Proc. 9th Intl. Workshop Artificial Intelligence and Statistics (AIstats), pp. 7–13, Society for Artificial Intelligence and Statistics, Key West, Florida, 2003.
Earlier version     Related paper
Details     Download: [pdf] [djvu] [ps.gz] 

T. Graepel and N. N. Schraudolph. Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 450–455, Springer Verlag, Berlin, Madrid, Spain, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. Graepel. Towards Stochastic Conjugate Gradient Methods. In Proc. 9th Intl. Conf. Neural Information Processing (ICONIP), pp. 853–856, IEEE, 2002.
Related paper
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. Graepel. Conjugate Directions for Stochastic Gradient Descent. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 1351–1356, Springer Verlag, Berlin, Madrid, Spain, 2002.
Latest version     Related paper
Details     Download: [pdf] [djvu] [ps.gz] 

Grefenstette, John J.

N. N. Schraudolph and J. J. Grefenstette. A User's Guide to GAucsd 1.4. Technical Report CS92-249, University of California, San Diego, 1992.
Details     Download: [pdf] [djvu] [ps.gz] [sh.gz] 

Hansen, Nikolaus

S. Müller, N. N. Schraudolph, P. Koumoutsakos, and N. Hansen. Step Size Adaptation in Evolution Strategies---Two Approaches. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 161–164, AAAI, New York, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

Kamenetsky, Dmitry

N. N. Schraudolph and D. Kamenetsky. Efficient Exact Inference in Planar Ising Models. In Advances in Neural Information Processing Systems (NIPS), pp. 1417–1424, Curran Associates, Inc., 2009.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and D. Kamenetsky. Efficient Exact Inference in Planar Ising Models. Technical Report 0810.4401, arXiv, 2008.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

Karatzoglou, Alexandros

A. Karatzoglou, S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size-Adapted Online Support Vector Learning. In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE, 2005.
Details     Download: [pdf] [djvu] [ps.gz] 

Klapper-Rybicka, Magdalena

M. Klapper-Rybicka, N. N. Schraudolph, and J. Schmidhuber. Unsupervised Learning in Recurrent Neural Networks. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 674–681, Springer Verlag, Berlin, Vienna, Austria, 2001.
Details     Download: [pdf] [djvu] [ps.gz] 

Koller-Meier, Esther

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast Stochastic Optimization for Articulated Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, N. N. Schraudolph, and L. Van Gool. Stochastic Optimization for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated Structures. In IEEE Workshop on Articulated and Nonrigid Motion, Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C., 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In First European Conference on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Kondor, Risi

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

Koumoutsakos, Petros

D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary Algorithms with Gaussian Process Fitness Function Models. IEEE Transactions on Systems, Man, and Cybernetics, C35(2):183–194, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary Algorithms Using Fitness Function Models. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 166–169, AAAI, Chicago, 2003.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, and P. Koumoutsakos. Evolutionary and Gradient-Based Algorithms for Lennard-Jones Cluster Optimization. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 160–165, AAAI, Chicago, 2003.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, P. Koumoutsakos, and N. Hansen. Step Size Adaptation in Evolution Strategies---Two Approaches. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 161–164, AAAI, New York, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, and P. D. Koumoutsakos. Step Size Adaptation in Evolution Strategies using Reinforcement Learning. In Proc. Congress on Evolutionary Computation, pp. 151–156, IEEE, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

Kriegel, Hans-Peter

K. M. Borgwardt, H. Kriegel, S. Vishwanathan, and N. N. Schraudolph. Graph Kernels for Disease Outcome Prediction from Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing (PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

Li, Zhidong

Z. Li, J. Chen, and N. N. Schraudolph. An Improved Mean-Shift Tracker with Kernel Prediction and Scale Optimisation Targeting for Low-Frame-Rate Video Tracking. In 19th Intl. Conf. Pattern Recognition (ICPR), Tampa, Florida, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph. Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing (MMSP), IEEE, Cairns, Australia, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Müller, Pascal

M. Bray, E. Koller-Meier, P. Müller, N. N. Schraudolph, and L. Van Gool. Stochastic Optimization for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In First European Conference on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Müller, Sybille

S. Müller, N. N. Schraudolph, and P. Koumoutsakos. Evolutionary and Gradient-Based Algorithms for Lennard-Jones Cluster Optimization. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 160–165, AAAI, Chicago, 2003.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, P. Koumoutsakos, and N. Hansen. Step Size Adaptation in Evolution Strategies---Two Approaches. In Genetic and Evolutionary Computation Conference Workshop Program, pp. 161–164, AAAI, New York, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Müller, N. N. Schraudolph, and P. D. Koumoutsakos. Step Size Adaptation in Evolution Strategies using Reinforcement Learning. In Proc. Congress on Evolutionary Computation, pp. 151–156, IEEE, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

McInerney, John

R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving Networks: Using the Genetic Algorithm with Connectionist Learning. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, SFI Studies in the Sciences of Complexity: Proceedings, pp. 511–547, Addison-Wesley, Redwood City, CA, 1992.
Details     Download: [pdf] [djvu] [ps.gz] 

Murphy, Kevin

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Murphy. Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods. In Proc. 23rd Intl. Conf. Machine Learning (ICML), pp. 969–976, ACM Press, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Rohr, Peter von

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

Roth, Alexander C.

G. Cannarozzi, N. N. Schraudolph, M. Faty (joint first authors), P. v. Rohr, M. T. Friberg, A. C. Roth, G. H. Gonnet, and Y. Barral. A Role for Codon Order in Translation Dynamics. Cell, 141(2):355–367, 16 Apr 2010.
Details     Download: [pdf] [djvu] [ps.gz] 

Schmidhuber, Jürgen

F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, 3:115–143, 2002.
Details     Download: [pdf] [djvu] [ps.gz] 

M. Klapper-Rybicka, N. N. Schraudolph, and J. Schmidhuber. Unsupervised Learning in Recurrent Neural Networks. In Proc. Intl. Conf. Artificial Neural Networks (ICANN), pp. 674–681, Springer Verlag, Berlin, Vienna, Austria, 2001.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, M. Eldracher, and J. Schmidhuber. Processing Images by Semi-Linear Predictability Minimization. Network: Computation in Neural Systems, 10(2):133–169, 1999.
Details     Download: [djvu] [ps.gz] 

J. Schmidhuber, J. Zhao, and N. N. Schraudolph. Reinforcement Learning with Self-Modifying Policies. In S. Thrun and L. Pratt, editors, Learning to Learn, pp. 293–309, Kluwer Academic Publishers, Norwell, MA, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 

Schmidt, Mark W.

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Murphy. Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods. In Proc. 23rd Intl. Conf. Machine Learning (ICML), pp. 969–976, ACM Press, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Sejnowski, Terrence J.

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Learning to Evaluate Go Positions via Temporal Difference Methods. In N. Baba and L. C. Jain, editors, Computational Intelligence in Games, Studies in Fuzziness and Soft Computing, pp. 77–98, Springer Verlag, Berlin, 2001.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Tempering Backpropagation Networks: Not All Weights Are Created Equal. In Advances in Neural Information Processing Systems (NIPS), pp. 563–569, The MIT Press, Cambridge, MA, 1996.
Details     Download: [pdf] [djvu] [ps.gz] 

P. A. Viola, N. N. Schraudolph, and T. J. Sejnowski. Empirical Entropy Manipulation for Real-World Problems. In Advances in Neural Information Processing Systems (NIPS), pp. 851–857, The MIT Press, Cambridge, MA, 1996.
In Ph.D. thesis     Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Plasticity-Mediated Competitive Learning. In Advances in Neural Information Processing Systems (NIPS), pp. 475–480, The MIT Press, Cambridge, MA, 1995.
In Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal Difference Learning of Position Evaluation in the Game of Go. In Advances in Neural Information Processing Systems (NIPS), pp. 817–824, Morgan Kaufmann, San Francisco, CA, 1994.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Unsupervised Discrimination of Clustered Data via Optimization of Binary Information Gain. In Advances in Neural Information Processing Systems (NIPS), pp. 499–506, Morgan Kaufmann, San Mateo, CA, 1993.
In Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph and T. J. Sejnowski. Competitive Anti-Hebbian Learning of Invariants. In Advances in Neural Information Processing Systems (NIPS), pp. 1017–1024, Morgan Kaufmann, San Mateo, CA, 1992.
In Ph.D. thesis
Details     Download: [pdf] [djvu] [ps.gz] 

Smola, Alex J.

S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size Adaptation in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research, 7:1107–1133, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

A. Karatzoglou, S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size-Adapted Online Support Vector Learning. In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE, 2005.
Details     Download: [pdf] [djvu] [ps.gz] 

Sunehag, Peter

P. Sunehag, J. Trumpf, S. Vishwanathan, and N. N. Schraudolph. Variable Metric Stochastic Approximation Theory. In Proc. 12th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 560–566, Journal of Machine Learning Research, Clearwater Beach, Florida, 2009.
Details     Download: [pdf] [djvu] [ps.gz] 

Trumpf, Jochen

P. Sunehag, J. Trumpf, S. Vishwanathan, and N. N. Schraudolph. Variable Metric Stochastic Approximation Theory. In Proc. 12th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 560–566, Journal of Machine Learning Research, Clearwater Beach, Florida, 2009.
Details     Download: [pdf] [djvu] [ps.gz] 

D. Chik, J. Trumpf, and N. N. Schraudolph. Using an Adaptive VAR Model for Motion Prediction in 3D Hand Tracking. In 8th Intl. Conf. Automatic Face & Gesture Recognition (FG), IEEE, Amsterdam, Netherlands, 2008.
Details     Download: [pdf] [djvu] 

D. Chik, J. Trumpf, and N. N. Schraudolph. 3D Hand Tracking in a Stochastic Approximation Setting. In 2nd Workshop on Human Motion: Understanding, Modeling, Capture and Animation, 11th IEEE Intl. Conf. Computer Vision (ICCV), pp. 136–151, Springer Verlag, Berlin, Rio de Janeiro, Brazil, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

Van Gool, Luc

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Fast Stochastic Optimization for Articulated Structure Tracking. Image and Vision Computing, 25(3):352–364, 2007.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, N. N. Schraudolph, and L. Van Gool. Stochastic Optimization for High-Dimensional Tracking in Dense Range Maps. IEE Proceedings Vision, Image & Signal Processing, 152(4):501–512, 2005.
Earlier version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, N. N. Schraudolph, and L. Van Gool. Stochastic Meta-Descent for Tracking Articulated Structures. In IEEE Workshop on Articulated and Nonrigid Motion, Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C., 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. 3D Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Model. In First European Conference on Visual Media Production (CVMP), pp. 59–68, London, 2004.
Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Viola, Paul A.

P. A. Viola, N. N. Schraudolph, and T. J. Sejnowski. Empirical Entropy Manipulation for Real-World Problems. In Advances in Neural Information Processing Systems (NIPS), pp. 851–857, The MIT Press, Cambridge, MA, 1996.
In Ph.D. thesis     Latest version
Details     Download: [pdf] [djvu] [ps.gz] 

Vishwanathan, S. V. N.

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning. Journal of Machine Learning Research, 11:1145–1200, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

P. Sunehag, J. Trumpf, S. Vishwanathan, and N. N. Schraudolph. Variable Metric Stochastic Approximation Theory. In Proc. 12th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 560–566, Journal of Machine Learning Research, Clearwater Beach, Florida, 2009.
Details     Download: [pdf] [djvu] [ps.gz] 

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization. In Proc. 25th Intl. Conf. Machine Learning (ICML), pp. 1216–1223, Omnipress, Helsinki, Finland, 2008.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

K. M. Borgwardt, H. Kriegel, S. Vishwanathan, and N. N. Schraudolph. Graph Kernels for Disease Outcome Prediction from Protein-Protein Interaction Networks. In Proc. Pacific Symposium on Biocomputing (PSB), pp. 4–15, World Scientific, Maui, Hawaii, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Günter, N. N. Schraudolph, and S. Vishwanathan. Fast Iterative Kernel Principal Component Analysis. Journal of Machine Learning Research, 8:1893–1918, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, S. Günter, and S. Vishwanathan. Fast Iterative Kernel PCA. In Advances in Neural Information Processing Systems (NIPS), pp. 1225–1232, MIT Press, Cambridge, MA, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast Computation of Graph Kernels. In Advances in Neural Information Processing Systems (NIPS), pp. 1449–1456, MIT Press, Cambridge, MA, 2007.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Murphy. Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods. In Proc. 23rd Intl. Conf. Machine Learning (ICML), pp. 969–976, ACM Press, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size Adaptation in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research, 7:1107–1133, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

A. Karatzoglou, S. Vishwanathan, N. N. Schraudolph, and A. J. Smola. Step Size-Adapted Online Support Vector Learning. In Proc. 8th Intl. Symp. Signal Processing & Applications, IEEE, 2005.
Details     Download: [pdf] [djvu] [ps.gz] 

Yu, Jin

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning. Journal of Machine Learning Research, 11:1145–1200, 2010.
Short version
Details     Download: [pdf] [djvu] [ps.gz] 

J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex Optimization. In Proc. 25th Intl. Conf. Machine Learning (ICML), pp. 1216–1223, Omnipress, Helsinki, Finland, 2008.
Long version
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, J. Yu, and S. Günter. A Stochastic Quasi-Newton Method for Online Convex Optimization. In Proc. 11th Intl. Conf. Artificial Intelligence and Statistics (AIstats), pp. 436–443, Journal of Machine Learning Research, San Juan, Puerto Rico, 2007.
Details     Download: [pdf] [djvu] [ps.gz] 

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast Online Policy Gradient Learning with SMD Gain Vector Adaptation. In Advances in Neural Information Processing Systems (NIPS), pp. 1185–1192, MIT Press, Cambridge, MA, 2006.
Details     Download: [pdf] [djvu] [ps.gz] 

Yu, Zhenghua

Z. Li, J. Chen, A. Chong, Z. Yu, and N. N. Schraudolph. Using Stochastic Gradient-Descent Scheme in Appearance Model Based Face Tracking. In Proc. Intl. Workshop Multimedia Signal Processing (MMSP), IEEE, Cairns, Australia, 2008.
Details     Download: [pdf] [djvu] [ps.gz] 

Zhao, Jieyu

J. Schmidhuber, J. Zhao, and N. N. Schraudolph. Reinforcement Learning with Self-Modifying Policies. In S. Thrun and L. Pratt, editors, Learning to Learn, pp. 293–309, Kluwer Academic Publishers, Norwell, MA, 1998.
Details     Download: [pdf] [djvu] [ps.gz] 


Generated by bib2html.pl (written by Patrick Riley) on Thu Sep 25, 2014 12:00:33